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A class of discrete nonlinear Schrödinger equations with arbitrarily high-order nonlinearities is introduced.
These equations are derived from the same Hamiltonian using different Poisson brackets and include as
particular cases the saturable discrete nonlinear Schrödinger equation and the Ablowitz-Ladik equation. As a
common property, these equations possess three kinds of exact analytical stationary solutions for which the
Peierls-Nabarro barrier is zero. Several properties of these solutions, including stability, discrete breathers, and
moving solutions, are investigated.
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I. INTRODUCTION

The discrete nonlinear Schrödinger �DNLS� equation ap-
pears ubiquitously �1� throughout modern science since it
represents one of the simplest equations in which the com-
bination of dispersive effects with a cubic nonlinearity leads
to localized solutions of soliton type. Most notable is the role
it plays in understanding the propagation of electromagnetic
waves in glass fibers and other optical waveguides �2�. More
recently the DNLS has been used as a tight binding model
for Bose-Einstein condensates in optical lattices �3,4�. From
a physical point of view, it is of interest to study the effects
of including high-order nonlinear terms �higher than cubic�
in the equation on discrete solitons. These terms appear in
different physical contexts such as Bose gases with hard core
interactions in the Tonks-Girardeau regime �5� and low-
dimensional Bose-Einstein condensates in which quintic
nonlinearities in the nonlinear Schrödinger �NLS� equation
are used to model three-body interactions �6�. A self-focusing
cubic-quintic NLS equation is also used in nonlinear optics
as a model for photonic crystals �7�.

For the continuous NLS equation with attractive interac-
tion it is well-known that the higher-order nonlinearities
�higher than cubic� lead to the collapse in a finite time �blow
up� if the norm exceeds a critical value, even in the one-
dimensional case. The interplay between dimensionality and
the order of nonlinearity has indeed been used in the past as
a way to investigate collapse in low-dimensional nonlinear
systems �8�. Although in a discrete NLS system true collapse
cannot occur, due to the conservation of the norm, it may be
possible that some of the features observed in the continuous
NLS system about localized solutions may also exist at the
discrete level. In particular, it is known that in the 1D con-
tinuous NLS equation with high-order nonlinearity �for ex-
ample, quintic� there exists only one localized solution for
each value of the norm �critical norm�, the so-called Townes
soliton �9�, which separates collapsing and decaying solu-
tions while being marginally stable against decay or collapse.

In the presence of an external field, for example, a periodic
potential, it is possible to stabilize such solutions of the con-
tinuum NLS with higher-order nonlinearities against decay,
extending the existence range of localized solutions from a
single value of the norm to a whole interval. Since the dis-
crete NLS can be viewed as a tight binding model of the
continuous NLS with a periodic potential, it is of interest to
investigate the existence of discrete, stable localized solu-
tions when higher-order nonlinearity is introduced in the
DNLS.

The aim of this paper is twofold. First, we introduce a
general DNLS equation with arbitrary higher-order nonlin-
earities which in the appropriate limits reduces to the inte-
grable Ablowitz-Ladik �AL� equation �10� and to the cubic
DNLS with a saturable nonlinearity �11�. These two equa-
tions have the remarkable property that they possess different
analytical stationary solutions, both periodic and localized
�solitonic�, which are exact to all orders of nonlinearity.
These solutions exist for specific values of frequency and
nonlinear parameters and have been shown to be stable under
small perturbations. Second, we investigate the effects of
higher-order nonlinearity on the stability and mobility of lo-
calized solutions of a generalized DNLS. In particular, we
compute the Peierls-Nabarro �PN� barrier and perform direct
numerical integration to show the existence of moving solu-
tions.

The plan of the paper is as follows. In Sec. II we first
show that the AL model �10� and the saturable DNLS model
�11� can be obtained from the same Hamiltonian. In Sec. III
we extend these ideas to Hamiltonians with arbitrary nonlin-
earity and obtain several higher-order DNLS models. We
then obtain a number of �time� stationary, spatially periodic
as well as localized solutions. In Sec. IV we study the vari-
ous properties of these solutions. In Sec. V we examine the
question of the existence of moving solutions in DNLS mod-
els with higher-order nonlinearities. Finally in Sec. VI we
point out the possible implications of our results and some
open problems.
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II. THE MODEL

In a classic paper, Ablowitz and Ladik �10� showed that
one of the variants of the DNLS equation given by

i�̇n + �1 + ��n�2���n+1 + �n−1� − 2�n = 0, �1�

is integrable. In Ref. �12� a model was proposed which in
one limit goes over to the DNLS model while in the other
limit it goes over to the integrable AL model. Recently, we
were able to obtain exact periodic solutions of the DNLS
equation with a saturable nonlinearity �11�

i�̇n + ��n+1 + �n−1 − 2�n� +
���n�2

1 + ���n�2
�n = 0, �2�

which is an established model for optical pulse propagation
in various doped fibers �13�. In Eq. �2�, �n is a complex
valued “wave function” at site n, while � and � are real
parameters.

We point out that the two equations, i.e., Eqs. �1� and �2�
can both be derived from the same Hamiltonian H given by

H = �
n=1

N ���n − �n+1�2 −
�

�
��n�2 +

�

�2 ln�1 + ���n�2�� , �3�

and the equation of motion in both cases is

i�̇n = ��n,H� . �4�

The difference in the equations of motion comes from a dif-
ferent definition of the Poisson bracket �PB� and conse-
quently a different definition of the time derivative. The
Poisson bracket structure in both the cases can be compactly
written as

�U,V� = �
n=1

N 	 �U

��n

�V

��n
* −

�U

��n
*

�V

��n

�1 + ���n�2� . �5�

On using Eqs. �3� and �4� for �=0 ��n and i�n
* are conjugate

variables� it yields Eq. �2� �11� through Eq. �4�, while �
=� ��n and i�n

* are nonconjugate variables� yields the equa-
tion introduced in Ref. �12�

i�̇n + �1 + ���n�2���n+1 + �n−1 − 2�n� + ���n�2�n = 0. �6�

Note that the Poisson bracket structure in Eq. �5� satisfies the
Jacoby identity �14–17� even for a nonzero �. Also notice
that for �→0 both Eq. �2� and Eq. �6� reduce to the ordinary
DNLS. Therefore in the following we will assume ��0 and
perform the transformation ���n→�n. This will replace �
by 1 and �

� by �, thus rendering the problem a one parameter
problem.

For the �=0 case �11� the equation of motion, Eq. �2�, can
be written as

i�1 + ��n�2��̇n + �1 + ��n�2���n+1 + �n−1 − 2�n� + ���n�2�n = 0,

�7�

while for the �=1�=�� Eq. �6� becomes

i�̇n + �1 + ��n�2���n+1 + �n−1 − 2�n� + ���n�2�n = 0. �8�

Note that �=2 in Eq. �8� gives the AL equation �10�, Eq. �1�.

In both cases a conserved power P can be written:

P = �
n=1

N
1

�
ln�1 + ���n�2�, � → 0 or � = � = 1. �9�

The difference between the two cases is the presence of
i��n�2 in the factor in front of the time derivative term in Eq.
�7�. However, for a stationary solution �i.e., only exp�−i�t�
time dependence: i�̇n=��n� Eq. �7� can be written as

i�̇n + �1 + ��n�2���n+1 + �n−1 − 2�n� + �� + ����n�2�n = 0,

�10�

which is identical in form to Eq. �6�.
The exact solutions to Eq. �7� given in �11� all are station-

ary solutions “rotating” with the frequency

� = 2 − � . �11�

Inserting this frequency into Eq. �10� gives the AL equation:

i�̇n + �1 + ��n�2���n+1 + �n−1 − 2�n� + 2��n�2�n = 0.

�12�

From this it is clear that exact stationary solutions of the
saturable DNLS equation �11� are also stationary solutions of
the AL equation. Analytical expressions for stationary and
moving solutions of the AL equation were given by Scharf
and Bishop in Ref. �18� �note that their � differs from ours
by a factor of 2, see Eq. �11��. We also remark that, because
of the frequency relation �+�=2, Eq. �6� has stationary so-
lutions of the AL only if �=2, i.e., when it reduces to the AL
equation. In the following we shall demonstrate the existence
of analytical stationary solutions of the AL type also for gen-
eralizations of Eqs. �2� and �6�, with arbitrarily high-order
nonlinearities.

High-order nonlinearities

As mentioned in the Introduction, the physical applica-
tions of the ��=1� DNLS with higher-order nonlinearities
may arise in the context of tight-binding models of Bose-
Einstein condensates in optical lattices with three-body inter-
actions �6�. In addition, models of atmospheric third har-
monic generation by femtosecond infrared pulses �19�, the
dynamics of an electromagnetic beam with phase dislocation
�20�, and Bragg-grating silica fibers �21� involve higher-
order �saturable and nonsaturable� nonlinearities. Similarly,
higher-order �logarithmic� nonlinearities arise in many other
physical contexts. Examples include self-focusing of par-
tially coherent light in inertial, nonlinear Kerr-like photore-
fractive materials �22�, self-modified optical diffraction and
beam ellipticity recovery in ferroelectrics �23�, ultracold neu-
tron anomalies �24�, and magma ascent and transport mecha-
nisms in volcanos �25�.

We now generalize the nonlinear part of the Hamiltonian
H in Eq. �3� by replacing ln�1+ ��n�2� by

ln�1 + f���n�2�� , �13�

where the function f�x�, a polynomial of degree p+1, is
given by
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f�x� = �
j=0

p

� jx
j+1. �14�

Here �0 is always 1. Having already considered the case �
→0, and having chosen �=1, we can next choose two dif-
ferent values of � in Eq. �3�. Therefore, instead of Eq. �3�,
the Hamiltonian H is now given by

H = �
n=1

N

���n − �n+1�2 − ����n�2 + � ln�1 + f���n�2��� ,

�15�

and the generalized Poisson bracket by

�U,V� = �
n=1

N 	 dU

d�n

dV

d�n
* −

dV

d�n

dU

d�n
*
�1 + �f���n�2�� , �16�

with �=0 or 1. Note that the equation of motion is still given
by Eq. �4�.

We notice for the �=0 case that a transformation �n
→e−i��t�n would add �� to the coefficient of �n in the
equation of motion and subtract the same from the coeffi-
cient of the ��n�2 term in the Hamiltonian. Therefore, a ��
different from � will only shift the frequency. We remark that
some of the recently discussed models �26� fall in this cat-
egory and are essentially equivalent to the saturated DNLS
model �11�. Thus, both in this section and in Sec. III A the
effect will only be to change the frequency � by ��. This
will, however, not be the case for �=1 as discussed here and
in Sec. III B.

We also note that with higher-order nonlinearities too, be-
sides the Hamiltonian H, the power

P = �
n=1

N

��n�2, � = 0 �17�

or

P = �
n=1

N

ln�1 + f���n�2��, � = 1 �18�

is a conserved quantity.

III. EXACT ANALYTICAL SOLUTIONS

The main objective here is to find stationary solutions of
the type obtained in Ref. �11� but with an additional ampli-
tude factor A in the equation of motion derived from the
generalized Hamiltonian H given by Eq. �15�. In particular,
as in Ref. �11� we try to obtain three different types of solu-
tions. The type I solution is given by

�n
I = A

sn��,m�
cn��,m�

e−i��t+	�dn���n + c�,m� , �19�

where the frequency � is given by Eq. �11� while the two
equations determining m and � are

� =
2K�m�

Np
, � = 2

dn��,m�
cn2��,m�

. �20�

Here Np denotes the number of sites in one period of the
system. On the other hand, the type II solution is given by

�n
II = A�m

sn��,m�
dn��,m�

e−i��t+	�cn���n + c�,m� , �21�

with the same frequency � as given by Eq. �11� and the two
equations determining m and � being

� =
4K�m�

Np
, � = 2

cn��,m�
dn2��,m�

. �22�

Here, sn�x ,m�, cn�x ,m�, and dn�x ,m� are the Jacobi elliptic
functions of modulus m, while K�m� is the complete elliptic
integral of the first kind �27�. The two solutions have a com-
mon limit for m→1 giving the type III solution:

�n
III = A

sinh���
cosh���n + c��

e−i��t+	�, �Np → 
� , �23�

with � being determined by

� = 2 cosh��� . �24�

A. Standard Poisson brackets, �=0

In this case of the standard PB ��=0�, the equation of
motion becomes

i�̇n + ��n+1 − 2�n + �n−1� +
���1 + f���n�2� − �f����n�2��

�1 + f���n�2��
�n

= 0, �25�

or equivalently,

�i�̇n − 2�n + ���n��1 + f���n�2�� + ��n+1 + �n−1��1 + f���n�2��

− �f����n�2��n = 0. �26�

This equation has the stationary solutions of the form �type I,
II, and III� as given by Eqs. �19�, �21�, and �23� where the
frequency � is still given by Eq. �11� but with � replaced by
��:

� = 2 − ��. �27�

Also, the two equations needed to determine m and � are still
the same. The condition on the amplitude is that A=�p+1
and that the coefficients of the polynomial � j in Eq. �14� are
given by

� j =
p

�j + 1�!
�k=1

j−1�p − k�
�p + 1� j , 1 � j � p . �28�

This specifies the equation completely. We find:

1 + f�x� = 	1 +
x

p + 1

p+1

→ ex for p → 
 . �29�

For the first few values of p one finds:
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p = 1: �1 =
1

4
,

p = 2: �1 =
1

3
, �2 =

1

27
,

p = 3: �1 =
3

8
, �2 =

1

16
, �3 =

1

256
,

p = 4: �1 =
2

5
, �2 =

2

25
, �3 =

1

125
, �4 =

1

3125
.

We note that p=0 gives the results of Ref. �11�. We also note
that the p0 cases are just a rescaling of the results of Ref.
�11�. Thus the higher-order nonlinearities do not give any-
thing essentially new in the �=0 case.

B. Nonstandard Poisson brackets, �=1

This case of the nonstandard PB represents a generaliza-
tion of Eq. �6�. From Eqs. �4� and �16� we get

i�̇n + ��n+1 + �n−1��1 + f���n�2�� + ��� − 2��1 + f���n�2���n

− �f����n�2��n = 0. �30�

In order to use the identities for the Jacobi elliptic functions
we must choose ��=2, and we get a restricted generalization
of Eq. �6�

i�̇n + ��n+1 + �n−1��1 + f���n�2�� − �f����n�2��n = 0.

�31�

This equation has the stationary solutions of the form �type I,
II, and III� as given by Eqs. �19�, �21�, and �23� except here
the equations determining m and � are

� =
2K�m�

Np
, � − � = 2

dn��,m�
cn2��,m�

�32�

for the type I solutions,

� =
4K�m�

Np
, � − � = 2

cn��,m�
dn2��,m�

�33�

for type II, and finally

� − � = 2 cosh��� �34�

for type III. The condition on the amplitude is now that A
=�p+1� �

�−� and that the coefficients of the polynomial � j
are given by

� j =
1

�j + 1�!
�k=1

j−1�p − k�
�p + 1� j−1 	� − �

�

 j	1 −

� − �

��p + 1�
 ,

1 � j � p . �35�

Note that the frequency � now also appears as a parameter.
This completely specifies our equation.

We find:

1 + f�x� =
1

p
	��p + 1�

� − �
− 1
	1 +

� − �

�

x

p + 1

p+1

−
�

� − �

p + 1

p
	1 +

� − �

�

x

p + 1

 . �36�

In addition, for p→


1 + f�x� →
�

� − �
exp� �� − ��x

�
� −

�

� − �
, �37�

and

f��x� → exp� �� − ��x
�

� . �38�

For the first few values of p we find:

p = 1: �1 =
� − �

2�
	1 −

� − �

2�

 ,

p = 2: �1 =
� − �

2�
	1 −

� − �

3�

, �2 =

�� − ��2

18�2 	1 −
� − �

3�

 ,

p = 3: �1 =
� − �

2�
	1 −

� − �

4�

, �2 =

�� − ��2

12�2 	1 −
� − �

4�

 ,

�3 =
�� − ��3

192�3 	1 −
� − �

4�

 .

Note that if �=0 �i.e., �−�
� =1� then, as expected, � j are the

same in the nonstandard Poisson bracket case as in the stan-
dard Poisson bracket case. We would like to remind that if
one also chooses �=2 then one obtains the AL model and its
higher-order generalizations.

It may be noted here that in order to obtain the above
solutions we have made use of two identities for the Jacobi
elliptic functions �28�. The first identity is

dn2�x��dn�x + a� + dn�x − a�� = A dn�x� + B�dn�x + a�

+ dn�x − a�� , �39�

where

A = 2 ns�a�ds�a�, B = − cs2�a� . �40�

Here ns�a�� 1
sn�a� , ds�a��

dn�a�

sn�a� , cs�a��
cn�a�

sn�a� . We have sup-

pressed the modulus m in our notation here. On repeatedly
multiplying both sides of the identity �39� by dn2�x� and
simplifying yields the following general identity of arbitrary
�odd� rank:

dn2n�x��dn�x + a� + dn�x − a��

= Bn�dn�x + a� + dn�x − a�� + A�
j=1

n

Bj−1dn2�n−j�+1�x� ,

�41�

which has been used in deriving some of the above solutions.
Here A, B are the same as given by Eq. �40�.

The second identity we have used above is �28�
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m cn2�x��cn�x + a� + cn�x − a��

= A cn�x� + B�cn�x + a� + cn�x − a�� , �42�

where

A = 2 ns�a�cs�a�, B = − ds2�a� . �43�

On repeatedly multiplying both sides of this identity by
m cn2�x� and simplifying yields the following general iden-
tity of arbitrary �odd� rank:

mn cn2n�x��cn�x + a� + cn�x − a��

= Bn�cn�x + a� + cn�x − a�� + A�
j=1

n

mn−jBj−1 cn2�n−j�+1�x� ,

�44�

which has been used in deriving some of the above solutions.
Here A, B are the same as given by Eq. �43�.

C. The p\� limit and the linear limit

Both �=0 and �=1 cases have the same linear �small
signal� limit:

i�̇n − �2 + � − ����n + ��n+1 + �n−1� = 0. �45�

For the �=0 case, the p→
 limit gives the same equation
�45�, because in this limit 1+ f�x�= f��x�=ex. For the �=1
case, however, 1+ f�x� and f��x� differ as is clear from Eqs.
�37� and �38�. Inserting these two equations into Eq. �31�
yields

i�̇n − �
�n+1 + �n−1

� − �
+ �e��−��/�x	�n+1 + �n−1

� − �
− �n
 = 0.

�46�

This equation is a little bit tricky since it contains terms of
the order �p and �pep. We must balance the �pep terms first
giving

�n+1 + �n−1 = �� − ���n, �47�

and next balance the smaller terms giving

i�̇n = ��n. �48�

Note that in this case we end up with two coupled linear
equations, one describing the spatial variation and one de-
scribing the temporal variation.

IV. PROPERTIES OF THE SOLUTIONS

A. PN barrier

In a discrete lattice there is an energy cost associated with
moving localized modes �such as a soliton or a breather� by
a half lattice constant. This is the celebrated Peierls-Nabarro
�PN� barrier �29–32�. As is well-known, while for the AL
�i.e., p=0, �=1, �=2� case, this barrier is known to be zero,
as shown in Ref. �11�, this barrier is nonzero in the case of
the saturated DNLS model �i.e., p=0, �=0�. It is then of
significant interest to know whether this barrier exists in

models with higher-order nonlinearities. Since for p=0, �
=0, we have already studied the various properties of the
solutions in Ref. �11� and since higher-order nonlinearities
do not give anything essentially new, we will only study the
properties of the �=1 solutions. In particular, we will show
that like the AL case, even for all the higher-order models,
the PN barrier is zero.

In view of ��=2, the Hamiltonian �15� �for �=1� takes a
simple form

H = �
n=1

N

�− �n�n+1
* − �n

*�n+1 + � ln�1 + f���n�2��� � H1 + H2,

�49�

while the power P is as given by Eq. �18�. The first part of
the Hamiltonian without the logarithmic term �H1� is easily
evaluated in the case of all three solutions as given by Eqs.
�19�, �21�, and �23� and it is easily shown that for all three
solutions the answer is independent of the constant c, i.e., the
distance from a lattice point where the center of the elliptic
soliton solution is located. For example, for solution of type
I, we obtain

H1
I = −

2A2Np

cs2��,m�
�dn��,m� − cs��,m�Z��,m�� , �50�

while for the solution of type II

H1
II = −

2A2Np

cs2��,m�
�m cn��,m� − ds��,m�Z��,m�� , �51�

and for solution of type III

H1
III = − 4A2 sinh��� . �52�

Here Z�� ,m� is the Jacobi zeta function �27�. While deriving
these relations, use has been made of the identities in Ref.
�28�

dn�x�dn�x + a� = dn�a� − cs�a�Z�a� + cs�a��Z�x + a� − Z�x�� ,

�53�

m cn�x�cn�x + a� = m cn�a� − ds�a�Z�a�

+ ds�a��Z�x + a� − Z�x�� . �54�

We are unable to evaluate the expression for power P and
�hence� the second term in the Hamiltonian H2 analytically
for any nonzero p in the case of solutions of type I and II.
However, this is easily accomplished in the case of the lo-
calized solutions of type III. Nevertheless, even without the
explicit computation, it is easy to show that the PN barrier is
zero in the case of all three solutions. Let us first explain the
key idea. The power P is given by

P = �
n=1

N

ln�1 + �n
2 + �1�n

4 + ¯ + �p�n
2p+2� , �55�

where �n=�ne−i��t+	� and �n is easily obtained from Eqs.
�19�, �21�, and �23�. The key point to note is that the expres-
sion under the logarithm can always be factorized as
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	1 +
� − �

�p + 1��
�n

2
�1 +
2�1�

� − �
�n

2 + ¯ +
�p + 1��p�

� − �
�n

2p� ,

�56�

which can be further factorized as

	1 +
� − �

�p + 1��
�n

2
�1 + a1�n
2��1 + a2�n

2� ¯ �1 + ap�n
2� ,

�57�

where a1 ,a2 , . . . ,ap are the roots of the above equation. For
example

�
j=1

p

aj =
2�1�

� − �
, 

j=1

p

aj =
�p + 1��p�

� − �
. �58�

Hence the expression for power takes the simple form

P = �
n=1

N

ln�1 +
� − �

�p + 1��
�2� + �

j=1

p

�
n=1

N

ln�1 + aj�n
2� .

�59�

We now observe that in the celebrated AL case, the power
P is given by

P = �
n=1

N

ln�1 + �n
2� , �60�

where �n is either a dn���n+c−vt ,m�� or dn replaced by
cn���n+c−vt ,m�� or by sech���n+c−vt��, and it is well-
known in that case that this sum is independent of c since P
is a constant of motion and t and c always come together in
this expression �33�. As a result, it immediately follows that
even for the higher-order DNLS models the power P and
hence H2 must also be c-independent being a sum of p terms
of the same form as that appears in the AL case. Thus we see
that remarkably enough, even in higher-order DNLS models
the PN barrier is zero in the case of all three solutions.

Unfortunately for the solutions of type I and II we are
unable to perform the additions analytically and hence com-
pute P and H2 analytically. However, for the spatially local-
ized solutions of type III this is easily accomplished. We
observe that for the localized solutions of type III, each term
in the sum has the form

�
n=−





ln�1 + a sech2 ��n + c�� , �61�

and as is well-known from the AL case �33�, this sum is
c-independent and given by

�
n=−





ln�1 + a sech2 ��n + c�� =
2

�
�sinh−1 �a�2. �62�

Thus in principle we know P and H2 for type III solutions.
As an illustration, for the p=1 case, it is easily shown that

H2 = �P = 2��

+
2�

�
�sinh−1	� 2�

� − �
	1 −

� − �

2�

sinh �
�2

.

�63�

Generalizing, for arbitrary p, the power P and H2 are given
by

H2 = �P = 2��

+
2�

�
�
j=1

p �sinh−1	��p + 1�
�

� − �
aj sinh �
�2

.

�64�

It is indeed remarkable that the PN barrier is not only zero
for the AL models but for even higher-order generalizations.
It would be worthwhile to examine if the higher-order mod-
els are also integrable, although perhaps the answer is likely
not in the affirmative.

B. Stability

In order to study the linear stability of the exact solutions
�n

j �j is I, II, or III� we introduce the following expansion:

�n�t� = �n
j + 	�n�t�e−i�t, �65�

applied in a frame rotating with frequency � of the solution.
The stability analysis for the p=0, �=0 case was carried out
in Ref. �11� and as seen above, higher-order nonlinearities do
not give any new solution. We will therefore only consider
the stability of �=1 solutions. Upon using this expansion
into the equation of motion �for �=1, ��=2�

i�̇n + ��n+1 + �n−1��1 + f���n�2�� − �f����n�2��n = 0.

�66�

Next, retaining only terms linear in the perturbation, and
taking into account the basic frequency � of the unperturbed
solutions and the perturbations, we get

i	�̇n + �	�n+1 + 	�n−1��1 + f���n�2�� + �� − �f����n�2��	�n

+ ��n
*��n+1 + �n−1�f����n�2� − �f����n�2���n�2��	�n + 	�n

*�

= 0. �67�

Continuing by splitting the perturbation 	�n into real parts
	un and imaginary parts 	vn �	�n=	un+ i	vn� and introduc-
ing the two real vectors

	U = �	un� and 	V = �	vn� �68�

and the two real matrices A= �Anm� and B= �Bnm� by defining

Anm = �	n,m+1 + 	n,m−1��1 + f���n�2�� + „� − �f����n�2�

− 2�f����n�2���n�2 + 2�n
*��n+1 + �n−1�f����n�2�…	nm,

Bnm = �	n,m+1 + 	n,m−1��1 + f���n�2�� + �� − �f����n�2��	nm,

�69�

where m±1 in the Kronecker 	 means: m±1 mod N. Then
Eq. �67� can be written compactly as
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− 	V̇ + A	U = 0, and 	U̇ + B	V = 0 , �70�

where an overdot denotes time derivative. Combining these
first order differential equations we get

	V̈ + AB	V = 0, and 	Ü + BA	U = 0 . �71�

The two matrices A and B are symmetric and have real ele-
ments. However, since they do not commute AB and BA
= �AB�T �T means transpose� are not symmetric. AB and BA
have the same eigenvalues, but different eigenvectors. The
eigenvectors for each of the two matrices need not be or-
thogonal. The eigenvalue spectrum ��� of the matrices AB
and BA determines the stability of the exact solutions. If it
contains negative eigenvalues, the solution is unstable. The
eigenvalue spectrum always contains two eigenvalues which
are zero. These eigenvalues correspond to the translational
invariance �c� and to the invariance of the solution �n

j to a
constant phase factor e−i	 �i.e., translation in time�, respec-
tively.

In Fig. 1 we show three examples of such stability evalu-
ation. Figure 1 shows the lowest �nonzero� eigenvalue from
the spectra of type III solutions obtained for p=0 �solid line�,
p=1 �dashed line�, and p=2 �dashed-dotted line�. For the
integrable AL case �p=0� we observe the expected result that
all eigenvalues have a positive real value, indication that the
exact solution is stable for all widths �. In contrast, we see
that for both p=1 and p=2 the solution becomes unstable for
certain values of �. This instability occurs for relatively large
values of �, and thus when the solutions are very localized.

V. DISCRETE BREATHERS AND MOVING SOLITONS

In the following we focus on the AL limit of Eq. �31� and
investigate the existence of localized stationary solutions,
discrete breathers, and moving excitations, by means of di-

rect numerical integrations. In Fig. 2�a� we show the profiles
of the localized states corresponding to the type III solution
�soliton limit� for different values of p and for the same

FIG. 1. Lowest nonzero eigenvalues for type III solutions �Eq.
�23�� for the �solid line� integrable AL equation �p=0�, and for the
nonintegrable cases of p=1 �dashed line� and p=2 �dashed-dotted
line�. For p=1 and p=2, the eigenvalues are observed to become
negative, indicating instability, for certain values of �.

FIG. 2. �a� Stationary solutions of the GAL equation ��=2� for
different values of p ranging from p=1 �lower curve� to p=8 �upper
curve�. Other parameters are �=0.25, m=1. �b�–�d� The time evo-
lution of the solutions corresponding to the cases p=1,2 ,3,
respectively.
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parameter � �notice that this parameter fixes the norm
�power��. We see that as p is increased the amplitude �and the
norm� of the solution increases as a consequence of the
higher-order nonlinearities. In panels �b�, �c�, and �d� of this
figure we also show the time evolution of the stationary so-
lutions for the cases p=1, 2, and 3, respectively �similar
results are obtained for higher values of p�. Notice that the
states are quite stable under time evolution, thus confirming
the existence of stable localized solutions of the generalized
Ablowitz-Ladik �GAL� equation with higher-order nonlin-
earity.

Next we concentrate on moving solutions and on discrete
breathers. To this end, we recall that for the case p=0 �i.e.,
the usual AL equation� exact moving solutions of the travel-
ing waves type are well-known �18�. One can show that an
extension of these p=0 moving solutions to the case p0 is
not possible if one assumes a traveling wave ansatz.

The existence of a zero PN barrier, however, strongly sug-
gests the existence of moving solutions for all values of p. In
the following we investigate this aspect by means of a direct
numerical experiment. In this context, let us consider initial
conditions which are a linear superposition of two exact sta-
tionary solutions of the form

��n,t� = Ae−i�t�dn��	n −
N

2
+ X0
�

+ dn��	n −
N

2
− X0
�e−i	� , �72�

with A ,� given by our previous formulas. By properly
choosing the initial distance 2X0 between the centers of the
humps �in order to have a weak overlap� we can bring them
in interaction and at the same time have a good initial con-
dition which is very close to an exact solution. As for the
usual NLS solitons, the interaction between the humps de-
pends on their distance and on their phase difference 	. In
particular, we have that the two humps attract each other if
they are in phase �	=0� and repel if they are out of phase
�	=��. Note that the soliton collisions in DNLS have been
studied and analyzed in detail previously �34�.

The existence of a zero PN barrier can then be checked by
increasing the initial distance between two out-of-phase
humps and observe if the humps are set in motion by the
mutual repulsion. Since by increasing the initial distance one
considerably reduces the interaction between the humps �the
interaction goes to zero exponentially with the distance� one
has that for large separations motion can exist only if the PN
barrier is zero. In Fig. 3 we show the results of such a nu-
merical experiment by reporting the trajectories of the humps
center �point of maximum amplitude� obtained from the
GAL equation with p=1 �AL with cubic-quintic nonlinear-
ity� for different values of X0 and initial phase 	=�. We see
that for small initial separations the two humps move in op-
posite directions with high velocity while as we increase the
initial separation the velocity gets progressively smaller. Our
numerical investigations seem to indicate the absence of any
critical threshold in the initial separation above which mo-
tion is stopped, which is in agreement with our analytical
considerations about the absence of the PN barrier.

This behavior is also seen from Fig. 4�a� in which the
time evolution of two stationary solutions of the GAL for
p=1, initially displaced by a distance larger than their rest
widths, is depicted. From this figure it is clear that there is
practically no radiation generated during the motion, thus
making the hump dynamics very close to that of exact �trav-
eling wave� solitons. In panel �b� of this figure we depict the
time dependence of the amplitude during the hump motion of
panel �a�, from which we observe that, except for the initial
part where interaction dominates, a very regular pattern is
generated. Notice that the amplitude oscillation lobes corre-
spond to the vertical segments visible in the trajectories de-
picted in Fig. 3, the minima of the lobes corresponding to the
times at which the maximum of the profile moves by one
lattice site �i.e., to next vertical segment in the trajectory
plot�. From this we infer that the reciprocal of the period of
the oscillation in the hump amplitude is just the hump veloc-
ity in lattice site units.

It is remarkable that the absence of radiation in the hump
dynamics is observed also for very long times and can sur-
vive multiple reflections. This is shown in �c� of Fig. 4 where
the dynamics of two humps moving with a higher velocity
�the velocity is increased by reducing the initial separation�
is depicted. Notice that the humps undergo several collisions
with almost no radiation generated. This behavior is a direct
consequence of the zero PN barrier and is reminiscent of
their soliton behavior. In �d� of Fig. 4 we show the same type
of behavior for the case p=2. This result indicates that mov-
ing localized states of the GAL equation may exist also for
higher values of p �the stability of these solutions, however,
may become critical as p is increased�.

The existence of a zero PN barrier makes it also possible
to have discrete breathers in the GAL equation. In order to
show this we repeat the same type of experiments considered
above but with an attractive instead of a repulsive interac-
tion, i.e., we take the initial humps to be in phase instead of
out of phase.

In Fig. 5 we depict the dynamics of two stationary solu-
tions of the GAL equation for p=1 and with a small value of
� so that the initial profiles are very wide and have a large
overlap. We see that, due to the mutual attraction, the two

FIG. 3. Time evolution of the position of the maxima of a two-
hump solution of the GAL equation with p=1, m=1, originated
from the initial condition in Eq. �72� with the distance between the
two humps increased in steps of 1 from X0=7 �lower slopes� to
X0=10 �higher slopes�. Other parameters are fixed as 	=�, �
=1.25.
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localized solutions undergo breathing oscillations with ap-
parently no radiation generated. Notice that the norm, which
is fixed by the parameter �, is below the instability threshold
and the oscillations continue forever. This solution represents
therefore an almost exact discrete breather of the GAL equa-
tion with higher-order nonlinearity. In the bottom panel of
Fig. 5 we show a discrete breather for the case p=2, indicat-
ing that these solutions may also exist with higher-order non-
linearities. By increasing the norm or by increasing p, how-
ever, we find that an instability in the dynamics may develop
at later times and the solution may become unstable. A pre-
liminary investigation indicates the existence of a critical
threshold �which depends on p� below which stable station-
ary humps and discrete breathers are stable. This stability
threshold may be reminiscent of the collapse threshold that
exists in the continuous NLS with higher-order nonlineari-
ties, for norms �powers� exceeding a critical value. For most
physical applications, however, only the lowest higher-order
nonlinearities will be of interest �i.e., the cases p=1,2�. In
these cases stable discrete solitonlike and discrete breather
solutions are found to be stable for a wide range of param-
eters �which one should be able to check with linear stability
analysis�.

We remark that the absence of the PN barrier, the pres-
ence of discrete breathers, and the absence of emitted radia-
tion during the hump dynamics could indicate a possible
complete integrability of the GAL equation. Although this
cannot be concluded without further analysis, we remark that
the vanishing of the PN barrier is a necessary but not a suf-
ficient condition for integrability. In this context we remark

FIG. 4. �a� Time evolution of two solitons of the GAL equation
obtained for p=1, m=1 and initial condition taken as in Eq. �72�
with X0=4. Other parameters are fixed as 	=�, �=1.25. �b� Time
dependence of the humps amplitude �modulo square of the maxi-
mum of the profiles� depicted in the second panel. The minima
correspond to the times at which the amplitude moves to the next
lattice site. Parameters are the same as for �a�. �c� Time evolution of
Eq. �31� with p=1, N=100 and initial condition taken as in Eq. �72�
with X0=1, m=1, �=1.25, and 	=�. �d� Same as in �c� but for
p=2 and X0=3.

FIG. 5. Top panel: Time evolution of Eq. �31� with p=1,
N=100 and initial condition taken as in Eq. �72� with X0=5, m=1,
�=0.15, and 	=0. Bottom panel: Same as for the upper panel but
for p=2 and X0=8.
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that for the nonintegrable discrete �4 models �35� and for
discrete sine-Gordon chains �36� it is possible to have a zero
PN barrier and radiationless moving kinks for particular val-
ues of parameters. The GAL equation could possibly be an-
other example in which this phenomenon may occur.

VI. CONCLUSIONS

We have introduced a class of discrete nonlinear
Schrödinger equations with arbitrarily high-order nonlineari-
ties which include as particular cases the saturable discrete
nonlinear Schrödinger equation �12� and the AL equation
�10�. We have obtained three different types of exact solu-
tions �both spatially periodic in terms of Jacobi elliptic func-
tions and their limiting hyperbolic case� for these models as
well as that of a higher-order generalization of the saturable
discrete nonlinear Schrödinger equation and the Ablowitz-
Ladik equation. We then studied the Peierls-Nabarro barrier
�29–32� for these solutions in various models and found that
it is zero indicating that the solitonlike solutions move with-
out experiencing any effect of the underlying discreteness,
which is quite remarkable. We also studied the stability of

these solutions under small perturbation and found that they
are robust as well as stable. Finally, we investigated the col-
lision of two hump solutions �both in-phase and out-of-phase
cases� and found that they collide and move without any
radiation. The out-of phase case indicates the formation of
discrete breathers. These results are strongly suggestive of
the integrability of the models introduced here, although we
did not attempt to prove this rigorously. Our solutions and
related properties are likely to be useful in many physical
contexts including optical waveguides �2�, Bose-Einstein
condensates in optical lattices �3,4�, nonlinear optics in the
context of photonic crystals �7�, and nonlinear Kerr-like as
well as photorefractive materials �22�.
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